Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo.

Yamada K, Tanaka T, Han D, 
Senzaki K, Kameyama T, Nabeshima T.

Department of Neuropsychopharmacology and Hospital Pharmacy,
Nagoya University School of Medicine, Japan.
Eur J Neurosci 1999 Jan;11(1):83-90


Amyloid beta-peptide (A beta), the major constituent of the senile plaques in the brains of patients with Alzheimer's disease, is cytotoxic to neurons and has a central role in the pathogenesis of the disease. Previous studies have suggested that oxidative stress is involved in the mechanisms of A beta-induced neurotoxicity in vitro. In the present study, we examined whether oxidative stress contributes to learning and memory deficits caused by continuous intracerebroventricular infusion of A beta-(1-42). In the A beta-(1-42)-infused rats, spontaneous alternation behaviour in a Y-maze and spatial memory in a water maze task were significantly impaired, as compared with A beta-(40-1)-infused control rats. The retention of passive avoidance learning was also significantly impaired by treatment with A beta-(1-42).  Potent antioxidants idebenone and alpha-tocopherol prevented the behavioural deficits in Y-maze and water maze, but not passive avoidance, tasks in A beta-(1-42)-infused rats when they were repeatedly administered by mouth once a day from 3 days before the start of A beta infusion to the end of behavioural experiments. Lipid peroxide levels in the hippocampus and cerebral cortex of A beta-(1-42)-infused rats did not differ from those in control animals, and neither idebenone nor alpha-tocopherol affected the lipid peroxide levels. These results suggest that treatment with antioxidants such as idebenone and alpha-tocopherol prevents learning and memory deficits caused by A beta.

Home | Order